设离心率为e的双曲线C:x^2/a^2-y^2/b^2=1的右焦点为F,直线l过点F且斜率为k,则直线l与双曲线的左右两支都相交的充要条件是?答案是e^2-k^2>1

来源:学生作业帮助网 编辑:作业帮 时间:2018/12/11 15:14:38
设离心率为e的双曲线C:x^2/a^2-y^2/b^2=1的右焦点为F,直线l过点F且斜率为k,则直线l与双曲线的左右两支都相交的充要条件是?答案是e^2-k^2>1设离心率为e的双曲线C:x^2/a

设离心率为e的双曲线C:x^2/a^2-y^2/b^2=1的右焦点为F,直线l过点F且斜率为k,则直线l与双曲线的左右两支都相交的充要条件是?答案是e^2-k^2>1
设离心率为e的双曲线C:x^2/a^2-y^2/b^2=1的右焦点为F,直线l过点F且斜率为k,则直线l与双曲线的左右两支都相交的充要条件是?答案是e^2-k^2>1

设离心率为e的双曲线C:x^2/a^2-y^2/b^2=1的右焦点为F,直线l过点F且斜率为k,则直线l与双曲线的左右两支都相交的充要条件是?答案是e^2-k^2>1
依题意可设直线方程为:y=k(x-c)代入双曲线方程得:
(b^2-a^2k^2)x^2+2a^2k^2cx-a^2k^2c^2-a^2b^2=0,方程有两根,可设为x1>0,x20,
e^2-k^2>1

我觉得他写的很好···支持

e^2-1-k^2>0,
e^2-k^2>1

设双曲线C:X^2-Y^2=1(a>0,b>0)的离心率E=2,经过双曲线 右焦点F且斜率为根号15/3的直线交双曲线与A,B点,若│AB│=12,求此时的双曲线方程我写错了设双曲线C:X^2/a^2-Y^2/b^2=1(a>0,b>0)的离心率E=2,经过双 (解析几何问题)设双曲线C:x^2/a^2-y^2/b^2=1(a>0,b>0)的离心率为e设双曲线C:x^2/a^2-y^2/b^2=1(a>0,b>0)的离心率为e,若准线l与两条渐近线相交于P、Q两点,F为右焦点,△FPQ为等边三角形.(1)求双曲线的离 设双曲线C:x^2/a^2-y^2/b^2=1(a>0,b>0)的离心率为e=2,经过双曲线的右焦点F且斜率为(根号15)/3的直线叫双曲线于A,B两点,若绝对值(AB)=12,求此时的双曲线的方程 已知双曲线的右准线x=4,右焦点为F(10,0),离心率e=2,求双曲线的方程.为何不可用e 离心率来求a,b,明明已知c是多少了! 【双曲线问题】设 a>1 ,则双曲线 x^2/a^2-y^2/(a+1)^2=1 的离心率 e 的范围是 . 高中数学双曲线在平面直角坐标系xOy中,双曲线E:x^2/a^2-y^2/b^2=1的左顶点为A,过双曲线E的右焦点F作与实轴垂直的直线交双曲线E于B,C两点,若ABC为直角三角形,则双曲线E的离心率为? 设c/e分别是双曲线的半焦距和离心率,则双曲线x^2/a-y^2/y=1的一个顶点到它的一条渐近线的距离是? 已知双曲线C:x^2/a^2-y^2=1(a>0)与直线I:x+y=1相交于两个不同的点A、B.问①求双曲线C的离心率e的取值范围②设直线I与y轴交点为P,且‘向量’PA=5/12‘向量’PB,求a的值. 设离心率为e的双曲线C:x^2/a^2-y^2/b^2=1的右焦点为F,直线l过点F且斜率为k,则直线l与双曲线的左右两支都相交的充要条件是?答案是e^2-k^2>1 在平面直角坐标系xOy中,双曲线E:x^2/a^2-y^2/b^2=1的左顶点为A,过双曲线E的右焦点F作与实轴垂直的直线交双曲线E于B,C两点,若ABC为直角三角形,则双曲线E的离心率为? 设双曲线x^2/a^2-y^2/b^2=1半焦距为c,已知原点到bx+ay=ab的距离等于根号3/4c,则双曲线的离心率为 设双曲线的渐近线方程为2x±3y=0,则双曲线的离心率为? 设双曲线 x^2/a^2-y^2=1( a>0)与直线l:x+y=1 相交于两个不同的地A、B(1)求双曲线C的离心率e的取值范围;(2)直线l 与y 轴的交点为P,且PA=PB ,求 a的值. 数学双曲线方程设双曲线C:a的平方分之x的平方-b平方分之y的平方=1,a和b均大于0的左右焦点分别为F1和F2,已知双曲线C过点(根号6,根号6),离心率e=2.问题1求双曲线C方程,并写出双曲线C的渐近 已知双曲线C的方程为y^2/a^2-x^2/b^2=1(a>0.b>o))离心率e=根号5/2,顶点到渐近线的距离为2根号5/5.求双曲线 设双曲线x^2/a^2-y^2/b^2=1的半焦距为c设双曲线X^2/A^2-Y^2/B^2=1(B>A>0)的半焦距为C,直线L过(A,0),(0,B),已知原点到直线的距离是根号3C/4,双曲线的离心率是__ 双曲线C:x^2/a^2-y^2/b^2=1(a>0,b>0)的左顶点为A,右焦点为F,离心率e=2,焦距为4.(1)求双曲线C的方程(2)设M是双曲线C上任意一点,且M在第一象限内,直线MA与MF的倾斜角分别为α1,α2,求2α1+α2的 设a>1,则双曲线x^2/a^2-y^2/(a+1)^2=1的离心率e的取值范围是