设a0,a1,a2,....,an是一个正项数列,对一切n=0,1,2,......,都有an^2<

来源:学生作业帮助网 编辑:作业帮 时间:2018/12/11 15:05:36
设正数列a0,a1,a2,…,an,…满足 (n≥2)且a0=a1=1.求{an}的通项公式.设正数列a0,a1,a2,…,an,…满足 (n≥2)且a0=a1=1.1.证明√(an/an-1)成等差数列2.求{an}的通项公式.

设正数列a0,a1,a2,…,an,…满足(n≥2)且a0=a1=1.求{an}的通项公式.设正数列a0,a1,a2,…,an,…满足(n≥2)且a0=a1=1.1.证明√(an/an-1)成等差数列

已知数列{an}满足对任意的正整数n,都有an>0,且a1^3+a2^3+..an^3=(a1+a2..an)^2,设数列{1/an*an+2}设数列{1/an*an+2}的前n项和为Sn,不等式Sn>1/3loga(1-a)对于任意正整数n恒成立,求实数a的取值范围

已知数列{an}满足对任意的正整数n,都有an>0,且a1^3+a2^3+..an^3=(a1+a2..an)^2,设数列{1/an*an+2}设数列{1/an*an+2}的前n项和为Sn,不等式Sn

设数列{an}的前n项和为Sn,满足2Sn=an+1-2^n+1+1,且a1,a2+5.a3成等差数证明:对一切正整数n,有1/a1+1/a2+...1/an

设数列{an}的前n项和为Sn,满足2Sn=an+1-2^n+1+1,且a1,a2+5.a3成等差数证明:对一切正整数n,有1/a1+1/a2+...1/an设数列{an}的前n项和为Sn,满足2Sn

数列an=3^n - 2^n 证明:对一切正整数n 有1/a1 + 1/a2 +…+ 1/an

数列an=3^n-2^n证明:对一切正整数n有1/a1+1/a2+…+1/an数列an=3^n-2^n证明:对一切正整数n有1/a1+1/a2+…+1/an数列an=3^n-2^n证明:对一切正整数n

已知正等比数列{an}中,a1=2,且-2a2,a3+2,28成等差,(1)求数列{an}的通项公式;(2)设bn=(n的平方+n)/an,如果对一切实数n都有bn小于等于t成立,求t的大小

已知正等比数列{an}中,a1=2,且-2a2,a3+2,28成等差,(1)求数列{an}的通项公式;(2)设bn=(n的平方+n)/an,如果对一切实数n都有bn小于等于t成立,求t的大小已知正等比

已知正项数列{an}{bn}满足,对任意正整数n,都有an,bn,an+1成等差数列,bn,an+1,bn+1成等比数列且a1=10,a2=15求证:数列(根号Bn)是等差数列求数列{an},{bn}通项公式设Sn=1/(a1)+1/(a2)+1/(a3)+.1/(an)如果对任

已知正项数列{an}{bn}满足,对任意正整数n,都有an,bn,an+1成等差数列,bn,an+1,bn+1成等比数列且a1=10,a2=15求证:数列(根号Bn)是等差数列求数列{an},{bn}

已知正项数列{an},{bn}满足:a1=3,a2=6,{bn}是等差数列,且对任意正整数n,都有bn,根号an,bn+1成等比数列.(1)求数列{bn}的通项公式.(2)设Sn=1/a1+1/a2+.+1/an,试比较Sn与1的大小.求哪位大仙给解下,

已知正项数列{an},{bn}满足:a1=3,a2=6,{bn}是等差数列,且对任意正整数n,都有bn,根号an,bn+1成等比数列.(1)求数列{bn}的通项公式.(2)设Sn=1/a1+1/a2+

已知正项数列{an}对任意自然数n都有a1^2+a2^+a3^2+……+an^2=(4^n-1)/3 求a1+a2+……an的值

已知正项数列{an}对任意自然数n都有a1^2+a2^+a3^2+……+an^2=(4^n-1)/3求a1+a2+……an的值已知正项数列{an}对任意自然数n都有a1^2+a2^+a3^2+……+a

已知正项数列{an},{bn}满足:对任何正整数n,都有an,bn,a(n+1)成等差数列,bn,a(n+1),b(n+1)成等比数列,且a1=10,a2=15求证:数列(根号Bn)是等差数列求数列{an},{bn}通用公式设Sn=1/(a1)+1/(a2)+1/(a3)+.1/(an)如果

已知正项数列{an},{bn}满足:对任何正整数n,都有an,bn,a(n+1)成等差数列,bn,a(n+1),b(n+1)成等比数列,且a1=10,a2=15求证:数列(根号Bn)是等差数列求数列{

高二柯西不等式设a1,a2,...an是一串互不相等的正整数证明对一切自然数n都有(a1/1^2)+(a2/2^2)+...+(an/n^2)>=1+1/2+...+1/n

高二柯西不等式设a1,a2,...an是一串互不相等的正整数证明对一切自然数n都有(a1/1^2)+(a2/2^2)+...+(an/n^2)>=1+1/2+...+1/n高二柯西不等式设a1,a2,

设数列a1,a2,…,an,满足a1=a2=1,a3=2,且对任何自然数n,都有anan+1an+2≠1,又anan+1an+2an+3=an+an+1+an+2+an+3,则a1+a2+…+a100的值是_________________.

设数列a1,a2,…,an,满足a1=a2=1,a3=2,且对任何自然数n,都有anan+1an+2≠1,又anan+1an+2an+3=an+an+1+an+2+an+3,则a1+a2+…+a100

设数列{an}满足:存在正数M,对一切n有An=|a2-a1|+|a3-a2|+-----+|an-a(n-1)|

设数列{an}满足:存在正数M,对一切n有An=|a2-a1|+|a3-a2|+-----+|an-a(n-1)|设数列{an}满足:存在正数M,对一切n有An=|a2-a1|+|a3-a2|+---

设数列{an}的前n项和为Sn,满足2Sn=an+1-2^n+1+1,且a1,a2+5.a3成等差数列(1)求a1的值(2)求数列{an}的通项公式(3)证明:对一切正整数n,有1/a1+1/a2+...1/an

设数列{an}的前n项和为Sn,满足2Sn=an+1-2^n+1+1,且a1,a2+5.a3成等差数列(1)求a1的值(2)求数列{an}的通项公式(3)证明:对一切正整数n,有1/a1+1/a2+.

高中数列难题.设数列{an}的前n项和为sn,满足2sn=a(n+1)-2^(n+1)+1,n属于n*.且a1,a2+5,a3成等差数列.1,求a1值.2,求{an}通项公式.3,证明对一切正整数n,有1/a1+1/a2+...+1/an

高中数列难题.设数列{an}的前n项和为sn,满足2sn=a(n+1)-2^(n+1)+1,n属于n*.且a1,a2+5,a3成等差数列.1,求a1值.2,求{an}通项公式.3,证明对一切正整数n,

已知数列{an}是公比大于1的等比数列,对任意的n∈N*有,an+1=a1+a2+...+an-1+5/2an+1/21.求数列{an}的通项公式2.设数列{bn}满足:bn=1/n(log3(a1)+log3(a2)+...+log3(an)+log3(t))(n∈N*),若{bn}为等差数列,求

已知数列{an}是公比大于1的等比数列,对任意的n∈N*有,an+1=a1+a2+...+an-1+5/2an+1/21.求数列{an}的通项公式2.设数列{bn}满足:bn=1/n(log3(a1)

已知数列an满足对任意的n∈N*,都有an>0,且a1^3+a2^3+.an^3=(a1+a2+.an)^2.1.求a1,a2的值2.求数列an的通项公式3.设数列{1/anan+2}的前n项和为S,不等式Sn>1/3loga(1-a)对任意正整数n恒成立,求实数a的取值范围

已知数列an满足对任意的n∈N*,都有an>0,且a1^3+a2^3+.an^3=(a1+a2+.an)^2.1.求a1,a2的值2.求数列an的通项公式3.设数列{1/anan+2}的前n项和为S,

数列{an}对一切自然数n属于N+满足a1+2a2+22a3+...+2n-1an=9-6n,求{an}的通项公式

数列{an}对一切自然数n属于N+满足a1+2a2+22a3+...+2n-1an=9-6n,求{an}的通项公式数列{an}对一切自然数n属于N+满足a1+2a2+22a3+...+2n-1an=9

已知数列{an}满足an>0且对一切n属于正整数,都有a1^3+a2^3+...+an^3=sn^2,sn是{an}的前n项和.求证:a(n+1)^2-a(n+1)=2sn

已知数列{an}满足an>0且对一切n属于正整数,都有a1^3+a2^3+...+an^3=sn^2,sn是{an}的前n项和.求证:a(n+1)^2-a(n+1)=2sn已知数列{an}满足an>0

数列{an],n属于N,满足a0=0,a1=2且对任意n属于N有啊a(n+2)=2a(n+1)-an+2,求数列{an}的通项公式2,Tn=1/3a1+1/4a2+……+1/(n+2)an,求Tn

数列{an],n属于N,满足a0=0,a1=2且对任意n属于N有啊a(n+2)=2a(n+1)-an+2,求数列{an}的通项公式2,Tn=1/3a1+1/4a2+……+1/(n+2)an,求Tn数列

设数列{an}的前n项和为Sn,满足2Sn=an+1-2^n+1+1,且a1,a2+5.a3成等差数求数列{an}的通项公式;证明:对一切正整数n,有1/a1+1/a2+...1/an

设数列{an}的前n项和为Sn,满足2Sn=an+1-2^n+1+1,且a1,a2+5.a3成等差数求数列{an}的通项公式;证明:对一切正整数n,有1/a1+1/a2+...1/an设数列{an}的